Laplace Transform of Cosine of Root over Root

From ProofWiki
Jump to navigation Jump to search

Theorem

$\laptrans {\dfrac {\cos \sqrt t} {\sqrt t} } = \sqrt {\dfrac \pi s} \, \map \exp {-\dfrac 1 {4 s} }$

where $\laptrans f$ denotes the Laplace transform of the function $f$.


Proof 1

Let $\map f t = \sin \sqrt t$.

Then:

\(\ds \map {f'} t\) \(=\) \(\ds \dfrac {\cos \sqrt t} {2 \sqrt t}\)
\(\ds \map f 0\) \(=\) \(\ds 0\)

So:

\(\ds \laptrans {\map {f'} t}\) \(=\) \(\ds \dfrac 1 2 \laptrans {\dfrac {\cos \sqrt t} {\sqrt t} }\)
\(\ds \) \(=\) \(\ds s \map F s - \map f 0\) Laplace Transform of Derivative
\(\ds \) \(=\) \(\ds \dfrac {\sqrt \pi} {2 s^{1/2} } \map \exp {-\dfrac 1 {4 s} }\) Laplace Transform of Sine of Root
\(\ds \leadsto \ \ \) \(\ds \laptrans {\dfrac {\cos \sqrt t} {\sqrt t} }\) \(=\) \(\ds \sqrt {\dfrac \pi s} \map \exp {-\dfrac 1 {4 s} }\)

$\blacksquare$


Proof 2

Laplace Transform of Cosine of Root over Root/Proof 2

Sources