Laplace Transform of Exponential/Real Argument/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\laptrans f$ denote the Laplace transform of a function $f$.

Let $e^x$ be the real exponential.

Then:

$\map {\laptrans {e^{a t} } } s = \dfrac 1 {s - a}$

where $a \in \R$ is constant, and $\map \Re s > \map \Re a$.


Proof

\(\ds \map {\laptrans {e^{a t} } } s\) \(=\) \(\ds \int_0^{\to +\infty} e^{-s t} e^{a t} \rd t\) Definition of Laplace Transform
\(\ds \) \(=\) \(\ds \int_0^{\to +\infty} e^{\paren {a - s} t} \rd t\) Exponential of Sum
\(\ds \) \(=\) \(\ds \lim_{L \mathop \to \infty} \int_0^L e^{\paren {a - s} t} \rd t\) Definition of Improper Integral
\(\ds \) \(=\) \(\ds \lim_{L \mathop \to \infty} \intlimits {\frac 1 {a - s} e^{\paren {a - s} t} } 0 L\) Primitive of Exponential Function, Integration by Substitution
\(\ds \) \(=\) \(\ds \lim_{L \mathop \to \infty} \frac 1 {a - s} \paren {e^{\paren {a - s} L} - e^{\paren {a - s} 0} }\)
\(\ds \) \(=\) \(\ds \lim_{L \mathop \to \infty} \frac 1 {s - a} \paren {1 - e^{\paren {a - s} L} }\) Exponential of Zero and rearranging


Because $s > a$, we have that $a - s < 0$.

Hence:

$\ds \lim_{L \mathop \to \infty} \paren {a - s} L \to -\infty$


So:

\(\ds \lim_{L \mathop \to \infty} \frac 1 {s - a} \paren {1 - e^{\paren {a - s} L} }\) \(=\) \(\ds \frac 1 {s - a} \paren {1 - 0}\) Exponential Tends to Zero
\(\ds \) \(=\) \(\ds \frac 1 {s - a}\)

$\blacksquare$


Sources