Laplace Transform of Exponential/Real Argument/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\laptrans f$ denote the Laplace transform of a function $f$.

Let $e^x$ be the real exponential.

Then:

$\map {\laptrans {e^{a t} } } s = \dfrac 1 {s - a}$

where $a \in \R$ is constant, and $\map \Re s > \map \Re a$.


Proof

From Laplace Transform of Derivative:

$(1): \quad \laptrans {\map {f'} t} = s \laptrans {\map f t} - \map f 0$

under suitable conditions.


Then:

\(\ds \map f t\) \(=\) \(\ds e^{a t}\)
\(\ds \leadsto \ \ \) \(\ds \map {f'} t\) \(=\) \(\ds a e^{a t}\)
\(\ds \map f 0\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds \laptrans {a e^{a t} }\) \(=\) \(\ds s \laptrans {e^{a t} } - 1\) from $(1)$, substituting for $\map f t$ and $\map f 0$
\(\ds \leadsto \ \ \) \(\ds a \laptrans {e^{a t} }\) \(=\) \(\ds s \laptrans {e^{a t} } - 1\)
\(\ds \leadsto \ \ \) \(\ds \laptrans {e^{a t} }\) \(=\) \(\ds \dfrac 1 {s - a}\) rearranging

$\blacksquare$


Sources