Laplace Transform of Sine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sin$ denote the real sine function.

Let $\laptrans f$ denote the Laplace transform of a real function $f$.


Then:

$\laptrans {\sin at} = \dfrac a {s^2 + a^2}$

where $a \in \R_{>0}$ is constant, and $\map \Re s > 0$.


Proof

\(\ds \laptrans {e^{i a t} }\) \(=\) \(\ds \frac 1 {s - i a}\) Laplace Transform of Exponential
\(\ds \) \(=\) \(\ds \frac {s + i a} {s^2 + a^2}\) multiplying top and bottom by $s + i a$

Also:

\(\ds \laptrans {e^{i a t} }\) \(=\) \(\ds \laptrans {\cos a t + i \sin a t}\) Euler's Formula
\(\ds \) \(=\) \(\ds \laptrans {\cos a t} + i \laptrans {\sin a t}\) Linear Combination of Laplace Transforms

So:

\(\ds \laptrans {\sin a t}\) \(=\) \(\ds \map \Im {\laptrans {e^{i a t} } }\)
\(\ds \) \(=\) \(\ds \map \Im {\frac {s + i a} {s^2 + a^2} }\)
\(\ds \) \(=\) \(\ds \frac a {s^2 + a^2}\)

$\blacksquare$


Sources