Lemniscate of Bernoulli as Locus in Complex Plane

From ProofWiki
Jump to navigation Jump to search

Theorem

The locus of $z$ on the complex plane such that:

$\cmod {z - a} \cmod {z + a} = a^2$

is a lemniscate of Bernoulli.


Proof

\(\ds \cmod {z - a} \cmod {z + a}\) \(=\) \(\ds a^2\)
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {x - a}^2 + y^2} \paren {\paren {x + a}^2 + y^2}\) \(=\) \(\ds a^4\) Definition of Complex Modulus
\(\ds \leadsto \ \ \) \(\ds \paren {x^2 - 2 a x + a^2 + y^2} \paren {x^2 + 2 a x + a^2 + y^2}\) \(=\) \(\ds a^4\)
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {x^2 + a^2 + y^2} - 2 a x} \paren {\paren {x^2 + a^2 + y^2} + 2 a x}\) \(=\) \(\ds a^4\)
\(\ds \leadsto \ \ \) \(\ds \paren {x^2 + a^2 + y^2}^2 - 4 a^2 x^2\) \(=\) \(\ds a^4\) Difference of Two Squares
\(\ds \leadsto \ \ \) \(\ds \paren {x^2 + y^2}^2 + a^4 + 2 \paren {x^2 + y^2} a^2 - 4 a^2 x^2\) \(=\) \(\ds a^4\)
\(\ds \leadsto \ \ \) \(\ds \paren {x^2 + y^2}^2 + 2 a^2 \paren {x^2 - 2 x^2 + y^2}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {x^2 + y^2}^2 + 2 a^2 \paren {y^2 - x^2}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {x^2 + y^2}^2\) \(=\) \(\ds 2 a^2 \paren {x^2 - y^2}\)

which is the equation defining a lemniscate of Bernoulli with major semiaxis $a \sqrt 2$.

$\blacksquare$


Sources