Length of Angle Bisector in terms of Angle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle with sides $a$, $b$ and $c$ opposite vertices $A$, $B$ and $C$ respectively.

Let $AD$ be the angle bisector of $\angle BAC$ that intersects $a$ at $D$.

LengthOfAngleBisector.png

Then:

$AD = \dfrac {2 c b \cos \frac A 2} {b + c}$


Proof

\(\ds \frac {BD} {DC}\) \(=\) \(\ds \frac c b\) Angle Bisector Theorem
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds BD\) \(=\) \(\ds \frac {a c} {b + c}\) as $a = BD + DC$


Then:

\(\ds \frac {AD} {\sin B}\) \(=\) \(\ds \frac {BD} {\sin \frac A 2}\) applying Law of Sines to $\triangle ADB$
\(\ds \) \(=\) \(\ds \frac {a c} {\paren {b + c} \sin \frac A 2}\) substituting for $BD$ from $(1)$
\(\ds \leadsto \ \ \) \(\ds AD\) \(=\) \(\ds \frac {a c \sin B} {\paren {b + c} \sin \frac A 2}\) rearranging
\(\ds \) \(=\) \(\ds \frac {c b \sin A} {\paren {b + c} \sin \frac A 2}\) Law of Sines
\(\ds \) \(=\) \(\ds \frac {2 c b \sin \frac A 2 \cos \frac A 2} {\paren {b + c} \sin \frac A 2}\) Double Angle Formula for Sine
\(\ds \) \(=\) \(\ds \frac {2 c b \cos \frac A 2} {b + c}\) simplifying

$\blacksquare$


Sources