Length of Arc of Nephroid
Jump to navigation
Jump to search
Theorem
The total length of the arcs of a nephroid constructed around a deferent of radius $a$ is given by:
- $\LL = 12 a$
Proof
Let a nephroid $H$ be embedded in a cartesian plane with its center at the origin and its cusps positioned at $\tuple {\pm a, 0}$.
We have that $\LL$ is $2$ times the length of one arc of the nephroid.
From Arc Length for Parametric Equations:
- $\ds \LL = 2 \int_{\theta \mathop = 0}^{\theta \mathop = \pi} \sqrt {\paren {\frac {\d x} {\d \theta} }^2 + \paren {\frac {\d y} {\d \theta} }^2} \rd \theta$
where, from Equation of Nephroid:
- $\begin{cases} x & = 3 b \cos \theta - b \cos 3 \theta \\ y & = 3 b \sin \theta - b \sin 3 \theta \end{cases}$
We have:
\(\ds \frac {\d x} {\d \theta}\) | \(=\) | \(\ds -3 b \sin \theta + 3 b \sin 3 \theta\) | ||||||||||||
\(\ds \frac {\d y} {\d \theta}\) | \(=\) | \(\ds 3 b \cos \theta - 3 b \cos 3 \theta\) |
Thus:
\(\ds \) | \(\) | \(\ds \paren {\frac {\d x} {\d \theta} }^2 + \paren {\frac {\d y} {\d \theta} }^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-3 b \sin \theta + 3 b \sin 3 \theta}^2 + \paren {3 b \cos \theta - 3 b \cos 3 \theta}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 9 b^2 \paren {\paren {-\sin \theta + \sin 3 \theta}^2 + \paren {\cos \theta - \cos 3 \theta}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 9 b^2 \paren {\sin^2 \theta - 2 \sin \theta \sin 3 \theta + \sin^2 3 \theta + \cos^2 \theta - 2 \cos \theta \cos 3 \theta + \cos^2 3 \theta}\) | Square of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds 9 b^2 \paren {2 - 2 \sin \theta \sin 3 \theta - 2 \cos \theta \cos 3 \theta}\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 18 b^2 \paren {1 - \paren {\sin \theta \sin 3 \theta + \cos \theta \cos 3 \theta} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 18 b^2 \paren {1 - \cos 2 \theta}\) | Cosine of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds 18 b^2 \paren {2 \sin^2 \theta}\) | Square of Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds 36 b^2 \sin^2 \theta\) | simplifying |
Thus:
- $\sqrt {\paren {\dfrac {\d x} {\d \theta} }^2 + \paren {\dfrac {\d y} {\d \theta} }^2} = 6 b \sin \theta$
So:
\(\ds \LL\) | \(=\) | \(\ds 2 \int_0^\pi 6 b \sin \theta \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 12 b \int_0^\pi \sin \theta \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 12 b \bigintlimits {-\cos \theta} 0 \pi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 12 b \paren {-\cos \pi - \paren {-\cos 0} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 12 b \paren {-\paren {-1} - \paren {-1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 24 b\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 12 a\) |
$\blacksquare$
Sources
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.21$: The Cycloid: Problem $14$