Length of Inradius of Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle whose sides are of lengths $a, b, c$.


Then the length of the inradius $r$ of $\triangle ABC$ is given by:

$r = \dfrac {\sqrt {s \paren {s - a} \paren {s - b} \paren {s - c} } } s$

where $s = \dfrac {a + b + c} 2$ is the semiperimeter of $\triangle ABC$.


Proof

Incircle.png

Let $\AA$ be the area of $\triangle ABC$.


From Area of Triangle in Terms of Inradius:

$\AA = r s$

where $s = \dfrac {a + b + c} 2$ is the semiperimeter of $\triangle ABC$.


From Heron's Formula:

$\AA = \sqrt {s \paren {s - a} \paren {s - b} \paren {s - c} }$

where $s = \dfrac {a + b + c} 2$ is the semiperimeter of $\triangle ABC$.


Hence the result:

$r = \dfrac {\sqrt {s \paren {s - a} \paren {s - b} \paren {s - c} } } s$

$\blacksquare$


Sources