Lexicographically Ordered Pair of Ordered Semigroups with Cancellable Elements

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S_1, \circ_1, \preccurlyeq_1}$ and $\struct {S_2, \circ_2, \preccurlyeq_2}$ be ordered semigroups.


Let $\struct {S_1 \times S_2, \odot} := \struct {S_1, \circ_1} \times \struct {S_2, \circ_2}$ denote the external direct product of $\struct {S_1, \circ_1}$ and $\struct {S_2, \circ_2}$.

Let $\struct {S_1 \times S_2, \preccurlyeq_l} := \struct {S_1, \preccurlyeq_1} \otimes^l \struct {S_2, \preccurlyeq_2}$ denote the lexicographic order of $\struct {S_1, \preccurlyeq_1}$ and $\struct {S_2, \preccurlyeq_2}$:

$\tuple {x_1, x_2} \preccurlyeq_l \tuple {y_1, y_2} \iff \paren {x_1 \prec_1 y_1} \lor \paren {x_1 = y_1 \land x_2 \preccurlyeq_2 y_2}$


Let every element of $\struct {S_1, \circ_1}$ be cancellable.


Then $\struct {S_1 \times S_2, \odot, \preccurlyeq_l}$ is also an ordered semigroup.


Converse

If $\circ_1$ is not a cancellable operation, then it may not necessarily be the case that $\preccurlyeq_l$ is compatible with $\odot$.


Proof

From Lexicographic Order is Ordering we have that $\struct {S_1 \times S_2, \preccurlyeq_l}$ is an ordered set.

From External Direct Product of Semigroups, $\struct {S_1 \times S_2, \odot}$ is a semigroup.

It remains to be shown that $\preccurlyeq_l$ is compatible with $\odot$.


Let $\tuple {x_1, x_2}, \tuple {y_1, y_2} \in S_1 \times S_2$ be arbitrary such that $\tuple {x_1, x_2} \preccurlyeq_l \tuple {y_1, y_2}$.


Case $1$
First suppose $x_1 = y_1$.
\(\ds \tuple {x_1, x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1, y_2}\)
\(\ds \leadsto \ \ \) \(\ds x_1\) \(=\) \(\ds y_1\)
\(\, \ds \land \, \) \(\ds x_2\) \(\preccurlyeq_2\) \(\ds y_2\)
\(\ds \leadsto \ \ \) \(\ds \forall \tuple {z_1, z_2} \in S_1 \times S_2: \, \) \(\ds x_1 \circ_1 z_1\) \(=\) \(\ds y_1 \circ_1 z_1\) Definition of Relation Compatible with Operation
\(\, \ds \land \, \) \(\ds x_2 \circ_2 z_2\) \(\preccurlyeq_2\) \(\ds y_2 \circ_2 z_2\)
\(\, \ds \land \, \) \(\ds z_1 \circ_1 x_1\) \(=\) \(\ds z_1 \circ_1 y_1\)
\(\, \ds \land \, \) \(\ds z_2 \circ_2 x_2\) \(\preccurlyeq_2\) \(\ds z_2 \circ_2 y_2\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x_1 \circ_1 z_1, x_2 \circ_2 z_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1 \circ_1 z_1, y_2 \circ_2 z_2}\) Definition of Lexicographic Order
\(\, \ds \land \, \) \(\ds \tuple {z_1 \circ_1 x_1, z_2 \circ_2 x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {z_1 \circ_1 y_1, z_2 \circ_2 y_2}\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x_1, x_2} \odot \tuple {z_1, z_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1, y_2} \odot \tuple {z_1, z_2}\) Definition of External Direct Product
\(\, \ds \land \, \) \(\ds \tuple {z_1, z_2} \odot \tuple {x_1, x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {z_1, z_2} \odot \tuple {y_1, y_2}\)


Case $2$
Now suppose $x_1 \prec_1 y_1$.
\(\ds \tuple {x_1, x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1, y_2}\)
\(\ds \leadsto \ \ \) \(\ds x_1\) \(\prec_1\) \(\ds y_1\)
\(\ds \leadsto \ \ \) \(\ds \forall \tuple {z_1, z_2} \in S_1 \times S_2: \, \) \(\ds x_1 \circ_1 z_1\) \(\prec_1\) \(\ds y_1 \circ_1 z_1\) Reflexive Reduction of Relation Compatible with Cancellable Operation is Compatible
\(\, \ds \land \, \) \(\ds z_1 \circ_1 x_1\) \(\prec_1\) \(\ds z_1 \circ_1 y_1\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x_1 \circ_1 z_1, x_2 \circ_2 z_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1 \circ_1 z_1, y_2 \circ_2 z_2}\) Definition of Lexicographic Order
\(\, \ds \land \, \) \(\ds \tuple {z_1 \circ_1 x_1, z_2 \circ_2 x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {z_1 \circ_1 y_1, z_2 \circ_2 y_2}\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x_1, x_2} \odot \tuple {z_1, z_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1, y_2} \odot \tuple {z_1, z_2}\) Definition of External Direct Product
\(\, \ds \land \, \) \(\ds \tuple {z_1, z_2} \odot \tuple {x_1, x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {z_1, z_2} \odot \tuple {y_1, y_2}\)

and the proof is complete.

$\blacksquare$


Sources