Limit to Infinity of Exponential Integral Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Ei: \R_{>0} \to \R$ denote the exponential integral function:

$\map \Ei x = \ds \int_{t \mathop = x}^{t \mathop \to +\infty} \frac {e^{-t} } t \rd t$

Then:

$\ds \lim_{x \mathop \to \infty} \map \Ei x = 0$


Proof

\(\ds \lim_{x \mathop \to \infty} \map \Ei x\) \(=\) \(\ds \lim_{x \mathop \to \infty} \int_x^\infty \frac {e^{-u} } u \rd u\) Definition of Exponential Integral Function
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to \infty} \int_1^\infty \frac {e^{-x t} } {x t} x \rd t\) substituting $u = x t$
\(\ds \) \(=\) \(\ds \int_1^\infty \lim_{x \mathop \to \infty} \paren {\frac {e^{-x t} } t} \rd t\) Lebesgue's Dominated Convergence Theorem
\(\ds \) \(=\) \(\ds \int_1^\infty \frac 0 t \rd t\) Exponential Tends to Zero and Infinity
\(\ds \) \(=\) \(\ds 0\)

$\blacksquare$


Sources