Limit to Infinity of x minus Gamma of Reciprocal of x

From ProofWiki
Jump to navigation Jump to search

Theorem

Limit-of-x-minus-gamma-reciprocal-x.png
$\ds \lim_{x \mathop \to \infty} \paren {x - \map \Gamma {\dfrac 1 x} } = \gamma$

where:

$\Gamma$ denotes the $\Gamma$ (Gamma) function
$\gamma$ denotes the Euler-Mascheroni constant.


Proof

\(\ds \lim_{x \mathop \to \infty} \paren {x - \map \Gamma {\frac 1 x} }\) \(=\) \(\ds \lim_{x \mathop \to 0} \paren {\frac 1 x - \map \Gamma x}\)
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0} \paren {\frac 1 x - \frac {\map \Gamma {x + 1} } x}\) Gamma Difference Equation
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0} \paren {\frac {\map \Gamma 1 - \map \Gamma {1 + x} } x}\) $\map \Gamma 1 = 1$ as Gamma Function Extends Factorial
\(\ds \) \(=\) \(\ds -\map {\Gamma'} 1\) Definition of Derivative
\(\ds \) \(=\) \(\ds \gamma\) Derivative of Gamma Function at 1

$\blacksquare$


Historical Note

François Le Lionnais and Jean Brette, in their Les Nombres Remarquables of $1983$, attribute this to a $1976$ result of K. Demys, but this has not been corroborated.


Sources