Linear Diophantine Equation/Examples/35x - 256y = 48

From ProofWiki
Jump to navigation Jump to search

Example of Linear Diophantine Equation

The linear diophantine equation:

$35 x - 256 y = 48$

has the general solution:

$\tuple {x, y} = \tuple {16 + 256 t, 2 + 35 t}$


Proof

We use Solution of Linear Diophantine Equation.

Using the Euclidean Algorithm:

\(\text {(1)}: \quad\) \(\ds -256\) \(=\) \(\ds -8 \times 35 + 24\)
\(\text {(2)}: \quad\) \(\ds 35\) \(=\) \(\ds 1 \times 24 + 11\)
\(\text {(3)}: \quad\) \(\ds 24\) \(=\) \(\ds 2 \times 11 + 2\)
\(\text {(4)}: \quad\) \(\ds 11\) \(=\) \(\ds 5 \times 2 + 1\)

Hence we see that $\gcd \set {35, -256} = 1$ which trivially divides $48$, and so there exists a solution.


Again with the Euclidean Algorithm:

\(\ds 1\) \(=\) \(\ds 11 - 5 \times 2\) from $(4)$
\(\ds \) \(=\) \(\ds 11 - 5 \times \paren {24 - 2 \times 11}\) from $(3)$
\(\ds \) \(=\) \(\ds 11 \times 11 - 5 \times 24\)
\(\ds \) \(=\) \(\ds 11 \times \paren {35 - 1 \times 24} - 5 \times 24\) from $(2)$
\(\ds \) \(=\) \(\ds 11 \times 35 - 16 \times 24\)
\(\ds \) \(=\) \(\ds 11 \times 35 - 16 \times \paren {-256 + 8 \times 35}\) from $(1)$
\(\ds \) \(=\) \(\ds -16 \times \paren {-256} - 117 \times 35\)
\(\ds \leadsto \ \ \) \(\ds 48\) \(=\) \(\ds 48 \times \paren {-16 \times \paren {-256} - 117 \times 35}\)
\(\ds \) \(=\) \(\ds \paren {-5616} \times 35 + \paren {-768} \times \paren {-256}\)


From Solution of Linear Diophantine Equation, the general solution is:

$\tuple {x, y} = \tuple {-5616 + \paren {-256} t, -768 - 35 t}$

for $t \in \Z$.

This can be simplified by setting $t \to -t$, thus

$\tuple {x, y} = \tuple {-5616 + 256 t, -768 + 35 t}$


We have that:

$-5616 + 22 \times 256 = 16$

and:

$-768 + 22 \times 35 = 2$

hence giving us the answer in smallest positive integer $\tuple {x, y}$:

$\tuple {x, y} = \tuple {16 + 256 t, 2 + 35 t}$

$\blacksquare$