Liouville's Theorem (Complex Analysis)

From ProofWiki
Jump to navigation Jump to search

This proof is about Liouville's Theorem in the context of Complex Analysis. For other uses, see Liouville's Theorem.



Theorem

Let $f: \C \to \C$ be a bounded entire function.


Then $f$ is constant.


Corollary

Let $f: \C \to \C$ be an entire function such that:

$\size {\map f z} \ge M$

for all $z \in \C$ for some real constant $M > 0$.


Then $f$ is constant.


Banach Space

Let $\struct {X, \norm {\, \cdot \,} }$ be a Banach space over $\C$.

Let $f : \C \to X$ be an analytic function that is bounded.


Then $f$ is constant.


Proof 1

By assumption, there is $M \ge 0$ such that $\cmod {\map f z} \le M$ for all $z \in \C$.

For any $R \in \R: R > 0$, consider the function:

$\map {f_R} z := \map f {R z}$

Using the Cauchy Integral Formula, we see that:

$\ds \cmod {\map {f_R'} z} = \frac 1 {2 \pi} \cmod {\int_{\map {C_1} z} \frac {\map {f_R} w} {\paren {w - z}^2} \rd w} \le \frac 1 {2 \pi} \int_{\map {C_1} z} M \cmod {\d w} = M$

where $\map {C_1} z$ denotes the circle of radius $1$ around $z$.



Hence:

$\ds \cmod {\map {f'} z} = \cmod {\map {f_R'} z} / R \le M / R$

Since $R$ was arbitrary, it follows that $\cmod {\map {f'} z} = 0$ for all $z \in \C$.

Thus $f$ is constant.

$\blacksquare$


Proof 2

By assumption, there is $M \ge 0$ such that $\cmod {\map f z} \le M$ for all $z \in \C$.

Let $r > 0$.

consider:

$D_r = \set {z \in \C: \cmod z \le r}$

Then, consider the parameterization $\gamma_r : \closedint 0 {2 \pi} \to \partial D_r$ given by:

$\map {\gamma_r} t := r e^{2 \pi i t}$

For all $z \in \C$, we have:

\(\ds \map {f'} z\) \(=\) \(\ds \map {g_z'} 0\)
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \oint_{\partial D_r} \frac {\map {g_z} w} {w^2} \rd w\) Cauchy Integral Formula
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \int_0^{2 \pi} \frac {\map {g_z} {\map {\gamma_r} t} } { {\map {\gamma_r} t}^2} {\map {\gamma_r '} t} \rd t\) Definition of Complex Contour Integral
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \int_0^{2 \pi} \frac {\map {g_z} {\map {\gamma_r} t} } { {\paren {r e^{2 \pi i t} } }^2} {2 \pi i r e^{2 \pi i t} } \rd t\)
\(\ds \) \(=\) \(\ds \frac i r \int_0^{2 \pi} \frac {\map {g_z} {\map {\gamma_r} t} } { e^{2 \pi i t} } \rd t\)
\(\ds \) \(=\) \(\ds \frac i r \int_0^{2 \pi} \frac {\map f { {\map {\gamma_r} t} + z} } { e^{2 \pi i t} } \rd t\)

where:

$\map {g_z} w := \map f {w + z}$

Hence, for all $z \in \C$:

\(\ds \cmod {\map {f'} z}\) \(=\) \(\ds \cmod {\frac i r \int_0^{2 \pi} \frac {\map f { {\map {\gamma_r} t} + z} } { e^{2 \pi i t} } \rd t}\)
\(\ds \) \(\le\) \(\ds \frac 1 r \int_0^{2 \pi} \cmod {\frac {\map f {\map {\gamma_r} t + z} } { e^{2 \pi i t} } } \rd t\) Modulus of Complex Integral
\(\ds \) \(\le\) \(\ds \frac 1 r \int_0^{2 \pi} M \rd t\)
\(\ds \) \(=\) \(\ds \dfrac {2 \pi M} r\)
\(\ds \) \(\to\) \(\ds 0\) as $r \to \infty$

Thus it follows that $\map {f'} z = 0$ for all $z \in \C$.

By Zero Derivative implies Constant Complex Function, $f$ is constant.

$\blacksquare$


Remark



In fact, the proof shows that, for a nonconstant entire function $f$, the maximum modulus $\ds \map M {r, f} := \max_{\cmod z \mathop = r} \cmod {\map f z}$ grows at least linearly in $r$.


Source of Name

This entry was named for Joseph Liouville.


Sources