Logarithm of Power/Natural Logarithm/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a strictly positive real number.

Let $a \in \R$ be a real number such that $a > 1$.

Let $r \in \R$ be any real number.

Let $\ln x$ be the natural logarithm of $x$.


Then:

$\map \ln {x^r} = r \ln x$


Proof

Here we adopt the definition of $\ln x$ to be:

$\ds \ln x := \int_1^x \dfrac {\d t} t$
\(\ds \map \ln {x^r}\) \(=\) \(\ds \int_1^{x^r} \dfrac {\d t} t\) Definition of Natural Logarithm
\(\ds \) \(=\) \(\ds \int_1^x \dfrac {r t^{r - 1} \rd t} {t^r}\) Integration by Substitution: $t \mapsto t^r$, $\d t \mapsto r t^{r - 1} \rd t$, $1 \mapsto 1$, $x^r \mapsto x$
\(\ds \) \(=\) \(\ds r \int_1^x \dfrac {\d t} t\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds r \ln x\) Definition of Natural Logarithm

$\blacksquare$