Matrix Equation of Plane Rotation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $r_\alpha$ be a rotation of the plane about the origin through an angle of $\alpha$.

Let $r_\alpha$ rotate an arbitrary point in the plane $P = \tuple {x, y}$ onto $P' = \tuple {x', y'}$

Then:

$\begin {bmatrix} x' \\ y' \end {bmatrix} = \begin {bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end {bmatrix} \begin {bmatrix} x \\ y \end {bmatrix}$


Proof

Let the coordinates of $P'$ be encoded as the elements of a $2 \times 1$ matrix.

We have:

\(\ds \begin {bmatrix} x' \\ y' \end {bmatrix}\) \(=\) \(\ds P'\)
\(\ds \) \(=\) \(\ds \map {r_\alpha} P\) Definition of Plane Rotation
\(\ds \) \(=\) \(\ds \begin {bmatrix} x \cos \alpha - y \sin \alpha \\ x \sin \alpha + y \cos \alpha \end {bmatrix}\) Equation defining Plane Rotation
\(\ds \) \(=\) \(\ds \begin {bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end {bmatrix} \begin {bmatrix} x \\ y \end {bmatrix}\) Definition of Matrix Product (Conventional)

Hence the result.

$\blacksquare$


Also see