Matrix Product as Linear Transformation
Jump to navigation
Jump to search
Theorem
Let:
- $ \mathbf A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}$
- $\mathbf x_{n \times 1} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$
- $\mathbf y_{n \times 1} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$
be matrices where each column is an element of a real vector space.
Let $T$ be the mapping:
- $T: \R^m \to \R^n, \mathbf x \mapsto \mathbf A \mathbf x$
Then $T$ is a linear transformation.
Proof
From Matrix Multiplication is Homogeneous of Degree $1$:
- $\forall \lambda \in \mathbb F \in \set {\R, \C}: \mathbf A \paren {\lambda \mathbf x} = \lambda \paren {\mathbf A \mathbf x}$
From Matrix Multiplication Distributes over Matrix Addition:
- $\forall \mathbf x, \mathbf y \in \R^m: \mathbf A \paren {\mathbf x + \mathbf y} = \mathbf A \mathbf x + \mathbf A \mathbf y$
Hence the result, from the definition of linear transformation.
$\blacksquare$
Also see
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 2.1$: Continuous and linear maps. Linear transformations
- For a video presentation of the contents of this page, visit the Khan Academy.