Maximum Function is Primitive Recursive

From ProofWiki
Jump to navigation Jump to search

Theorem

The maximum function $\max: \N^2 \to \N$, defined as:

$\max \left({n, m}\right) = \begin{cases}

m: & n \le m \\ n: & m \le n \end{cases}$ is primitive recursiveā€Ž.


Proof

We see that:

$\max \left({n, m}\right) = \left({n \ \dot - \ m}\right) + m$

because:

$(1):\quad n > m \implies \left({n \ \dot - \ m}\right) + m = n - m + m = n$
$(2):\quad n < m \implies \left({n \ \dot - \ m}\right) + m = 0 + m = m$
$(3):\quad n = m \implies \left({n \ \dot - \ m}\right) + m = 0 + m = m = n$

Hence we see that $\max$ is obtained by substitution from the primitive recursive function $n \ \dot - \ m$.

Hence the result.

$\blacksquare$