Mean of Unequal Real Numbers is Between them

From ProofWiki
Jump to navigation Jump to search

Theorem

$\forall x, y \in \R: x < y \implies x < \dfrac {x + y} 2 < y$


Proof

First note that:

\(\ds 0\) \(<\) \(\ds 1\) Real Zero is Less than Real One
\(\ds \leadsto \ \ \) \(\ds 0 + 0\) \(<\) \(\ds 1 + 1\) Real Number Inequalities can be Added
\(\ds \leadsto \ \ \) \(\ds 0\) \(<\) \(\ds \frac 1 {1 + 1}\) Reciprocal of Strictly Positive Real Number is Strictly Positive
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 0\) \(<\) \(\ds \frac 1 2\)


Then:

\(\ds x\) \(<\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds x + x\) \(<\) \(\ds x + y\) Real Number Axiom $\R \text O1$: Usual Ordering is Compatible with Addition
\(\ds \leadsto \ \ \) \(\ds \paren {x + x} \times \frac 1 2\) \(<\) \(\ds \paren {x + y} \times \frac 1 2\) Real Number Axiom $\R \text O2$: Usual Ordering is Compatible with Multiplication and from $(1)$
\(\ds \leadsto \ \ \) \(\ds x\) \(<\) \(\ds \frac {x + y} 2\) Definition of Real Division


Similarly:

\(\ds x\) \(<\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds x + y\) \(<\) \(\ds y + y\) Real Number Axiom $\R \text O1$: Usual Ordering is Compatible with Addition
\(\ds \leadsto \ \ \) \(\ds \paren {x + y} \times \frac 1 2\) \(<\) \(\ds \paren {y + y} \times \frac 1 2\) Real Number Axiom $\R \text O2$: Usual Ordering is Compatible with Multiplication and from $(1)$
\(\ds \leadsto \ \ \) \(\ds \frac {x + y} 2\) \(<\) \(\ds y\) Definition of Real Division

$\blacksquare$


Sources