Measure-Preserving Transformation Preserves Conditional Entropy/Corollary
Jump to navigation
Jump to search
Corollary to Measure-Preserving Transformation Preserves Conditional Entropy
Let $\struct {X, \BB, \mu}$ be a probability space.
Let $T: X \to X$ be a $\mu$-preserving transformation.
Let $\AA \subseteq \Sigma$ be finite sub-$\sigma$-algebra.
Then:
- $\map H {T^{-1} \AA} = \map H \AA$
where:
- $\map H \cdot$ denotes the conditional entropy
- $T^{-1} \AA$ is the pullback finite $\sigma$-algebra of $\AA$ by $T$
Proof
Let $\NN := \set {\O, \Omega}$ be the trivial $\sigma$-algebra.
Since:
- $T^{-1} \sqbrk \O = \O$
and:
- $T^{-1} \sqbrk \Omega = \Omega$
it follows from Definition of Pullback Finite Sigma-Algebra:
- $T^{-1} \NN = \NN$
Therefore:
\(\ds \map H \AA\) | \(=\) | \(\ds \map H {\AA \mid \NN}\) | Conditional Entropy Given Trivial $\sigma$-Algebra is Entropy | |||||||||||
\(\ds \) | \(=\) | \(\ds \map H {T^{-1} \AA \mid T^{-1} \NN}\) | Measure-Preserving Transformation Preserves Conditional Entropy | |||||||||||
\(\ds \) | \(=\) | \(\ds \map H {T^{-1} \AA \mid \NN}\) | as $T^{-1} \NN = \NN$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map H {T^{-1} \AA}\) | Conditional Entropy Given Trivial $\sigma$-Algebra is Entropy |
$\blacksquare$