Median Formula/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle.

Let $CD$ be the median of $\triangle ABC$ which bisects $AB$.

MedianOfTriangle.png

The length $m_c$ of $CD$ is given by:

${m_c}^2 = \dfrac {a^2 + b^2} 2 - \dfrac {c^2} 4$


Proof

Let $\triangle ABC$ be embedded in the complex plane.


Length-of-Triangle-Median-Complex.png


Let $\mathbf a = \overrightarrow {AC}$ and $\mathbf b = \overrightarrow {BC}$.

Then:

\(\ds \overrightarrow {AB}\) \(=\) \(\ds \mathbf a - \mathbf b\)
\(\ds \overrightarrow {AD}\) \(=\) \(\ds \dfrac {\overrightarrow {AB} } 2\)
\(\ds \) \(=\) \(\ds \dfrac {\mathbf a - \mathbf b} 2\)


Then:

\(\ds \overrightarrow {AC} + \overrightarrow {CD}\) \(=\) \(\ds \overrightarrow {AD}\)
\(\ds \leadsto \ \ \) \(\ds \overrightarrow {CD}\) \(=\) \(\ds \overrightarrow {AD} - \overrightarrow {AC}\)
\(\ds \) \(=\) \(\ds \frac {\mathbf a - \mathbf b} 2 - \mathbf a\)
\(\ds \) \(=\) \(\ds -\frac {\mathbf a + \mathbf b} 2\)
\(\ds \leadsto \ \ \) \(\ds {m_c}^2\) \(=\) \(\ds \size {\overrightarrow {CD} }^2\)
\(\ds \) \(=\) \(\ds \size {-\frac {\mathbf a + \mathbf b} 2}^2\)
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\paren {\mathbf a + \mathbf b} \cdot \paren {\mathbf a + \mathbf b} }\) Dot Product of Vector with Itself
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\mathbf a \cdot \mathbf a + \mathbf b \cdot \mathbf b + 2 \mathbf a \cdot \mathbf b}\) Square of Sum of Vectors
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\mathbf a \cdot \mathbf a + \mathbf b \cdot \mathbf b - \paren {\mathbf a - \mathbf b} \cdot \paren {\mathbf a - \mathbf b} + \mathbf a \cdot \mathbf a + \mathbf b \cdot \mathbf b}\) Square of Sum of Vectors
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {2 \size {\mathbf a}^2 + 2 \size {\mathbf b}^2 - \size {\mathbf a - \mathbf b}^2}\) Dot Product of Vector with Itself
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {2 a^2 + 2 b^2 - c^2}\)
\(\ds \) \(=\) \(\ds \frac {a^2 + b^2} 2 - \frac {c^2} 4\)

$\blacksquare$