Metric Defines Norm iff it Preserves Linear Structure
Jump to navigation
Jump to search
Theorem
Let $\struct {k, \norm {\,\cdot\,}_k}$ be a valued field.
Let $V$ be a vector space over the valued field $\struct {k, \norm {\,\cdot\,}_k}$.
Let $d: V \times V \to k$ be a metric on $V$.
Then the function $\norm v := \map d {v, 0}$ is a norm on $V$ if and only if for all $x, y, z \in V$, $\lambda \in k$:
- $(1): \quad \map d {x + z, y + z} = \map d {x, y}$ (homogeneity or translation invariance)
- $(2): \quad \map d {\lambda x, \lambda y} = \norm \lambda_k \map d {x, y}$ (the enlargement property)
Proof
Suppose first that $d$ satisfies the hypotheses $(1)$ and $(2)$.
From Metric Space Axiom $(\text M 4)$:
- $\forall u, v \in V: \map d {u, v} \ge 0$
Hence:
- $\forall u \in V: \norm u = \map d {u, 0} \ge 0$
Moreover, from Metric Space Axiom $(\text M 1)$:
- $\norm u = 0 \implies \map d {u, 0} = 0$
and hence:
- $u = 0$
Now let $\lambda \in K$, $u \in V$.
Then, using the enlargement property of $d$:
\(\ds \norm {\lambda v}\) | \(=\) | \(\ds \map d {\lambda v, 0}\) | Definition of $\norm {\,\cdot\,}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {\lambda v, \lambda \cdot 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm \lambda_k \map d {v, 0}\) | Enlargement Property | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm \lambda_k \norm v\) | Definition of $\norm{\,\cdot\,}$ |
Finally if $u,v \in V$, then we have
\(\ds \norm {u + v}\) | \(=\) | \(\ds \map d {u + v, 0}\) | Definition of $\norm {\,\cdot\,}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {u, -v}\) | Translation Invariance of $d$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \map d {u, 0} + d(0,-v)\) | Triangle Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {u, 0} + \map d {v, 0}\) | Enlargement Property | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm u + \norm v\) | Definition of $\norm {\,\cdot\,}$ |
![]() | This article is incomplete. In particular: converse to add You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by expanding it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Stub}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
$\blacksquare$