Metric Induced by Norm is Metric
Jump to navigation
Jump to search
Theorem
Let $V$ be a normed vector space.
Let $\norm{\,\cdot\,}$ denote its norm.
Let $d$ be the metric induced by $\norm {\,\cdot\,}$.
Then $d$ is a metric.
Proof
Proof of Metric Space Axiom $(\text M 1)$ and Metric Space Axiom $(\text M 4)$
Let $x, y \in V$.
Then:
- $\map d {x, y} = \norm {x - y} \ge 0$
and furthermore:
\(\ds \map d {x, y}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \norm {x - y}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds x - y\) | \(=\) | \(\ds \mathbf 0_V\) | Norm Axiom $\text N 1$: Positive Definiteness | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds x\) | \(=\) | \(\ds y\) |
$\Box$
Proof of Metric Space Axiom $(\text M 2)$
Let $x, y, z \in V$.
Then:
\(\ds \map d {x, z}\) | \(=\) | \(\ds \norm {x - z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm {x - y + y - z}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \norm {x - y} + \norm {y - z}\) | Norm Axiom $\text N 3$: Triangle Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {x, y} + \map d {y, z}\) |
$\Box$
Proof of Metric Space Axiom $(\text M 3)$
Let $x, y \in V$.
Then:
\(\ds \map d {x, y}\) | \(=\) | \(\ds \norm {x - y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm {-1 \paren {y - x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm {-1} \times \norm {y - x}\) | Norm Axiom $\text N 2$: Positive Homogeneity | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {y - x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map d {y, x}\) |
$\Box$
As $d$ satisfies the metric space axioms, it is a metric.
$\blacksquare$
Sources
- 2020: James C. Robinson: Introduction to Functional Analysis ... (previous) ... (next) $3.1$: Norms