Midpoints of Sides of Quadrilateral form Parallelogram

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Box ABCD$ be a quadrilateral.

Let $E, F, G, H$ be the midpoints of $AB, BC, CD, DA$ respectively.


Then $\Box EFGH$ is a parallelogram.


Proof

Let $z_1, z_2, z_3, z_4$ be the position vectors of the vertices of $\Box ABCD$.

The midpoints of the sides of $\Box ABCD$ are, then:

\(\ds OE\) \(=\) \(\ds \frac {z_1 + z_2} 2\)
\(\ds OF\) \(=\) \(\ds \frac {z_2 + z_3} 2\)
\(\ds OG\) \(=\) \(\ds \frac {z_3 + z_4} 2\)
\(\ds OH\) \(=\) \(\ds \frac {z_4 + z_1} 2\)

Take two opposite sides $EF$ and $HG$:

\(\ds EF\) \(=\) \(\ds \frac {z_2 + z_3} 2 - \frac {z_1 + z_2} 2\)
\(\ds \) \(=\) \(\ds \frac {z_3} 2 - \frac {z_1} 2\)
\(\ds HG\) \(=\) \(\ds \frac {z_3 + z_4} 2 - \frac {z_4 + z_1} 2\)
\(\ds \) \(=\) \(\ds \frac {z_3} 2 - \frac {z_1} 2\)
\(\ds \) \(=\) \(\ds EF\)


The vectors defining the opposite sides of $\Box EFGH$ are equal.

The result follows by definition of parallelogram.

$\blacksquare$


Sources