Minimum Value of Real Quadratic Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{>0}$ be a (strictly) positive real number.

Consider the quadratic function:

$\map Q x = a x^2 + b x + c$


$\map Q x$ achieves a minimum at $x = -\dfrac b {2 a}$, at which point $\map Q x = c - \dfrac {b^2} {4 a}$.


Proof

\(\ds \map Q x\) \(=\) \(\ds a x^2 + b x + c\)
\(\ds \) \(=\) \(\ds \dfrac {4 \paren {a x}^2 + 4 a b x + 4 a c} {4 a}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 a x + b}^2 - \paren {b^2 - 4 a c} } {4 a}\)


As $\paren {2 a x + b}^2 > 0$, it follows that:

\(\ds a x^2 + b x + c\) \(\ge\) \(\ds \dfrac {-\paren {b^2 - 4 a c} } {4 a}\)
\(\ds \) \(=\) \(\ds c - \dfrac {b^2} {4 a}\)

Equality occurs when $2 a x + b = 0$, that is:

$x = -\dfrac b {2 a}$

$\blacksquare$


Sources