Modulo Arithmetic/Examples/Multiplicative Inverse of 41 Modulo 97

From ProofWiki
Jump to navigation Jump to search

Example of Modulo Arithmetic

The inverse of $41$ under multiplication modulo $97$ is given by:

${\eqclass {41} {97} }^{-1} = 71$


Solution to $41 x \equiv 2 \pmod {97}$

The solution of the integer congruence:

$41 x \equiv 2 \pmod {97}$

is:

$x = 45$


Proof

From Ring of Integers Modulo Prime is Field, multiplication modulo $97$ has an inverse for all $x \in \Z_{97}$ where $x \ne 0$.


Using Euclid's Algorithm:

\(\text {(1)}: \quad\) \(\ds 97\) \(=\) \(\ds 2 \times 41 + 15\)
\(\text {(2)}: \quad\) \(\ds 41\) \(=\) \(\ds 2 \times 15 + 11\)
\(\text {(3)}: \quad\) \(\ds 15\) \(=\) \(\ds 11 + 4\)
\(\text {(4)}: \quad\) \(\ds 11\) \(=\) \(\ds 2 \times 4 + 3\)
\(\text {(5)}: \quad\) \(\ds 4\) \(=\) \(\ds 3 + 1\)


Then:

\(\ds 1\) \(=\) \(\ds 4 - 3\) from $(5)$
\(\ds \) \(=\) \(\ds 4 - \paren {11 - 2 \times 4}\) from $(4)$
\(\ds \) \(=\) \(\ds 3 \times 4 - 11\)
\(\ds \) \(=\) \(\ds 3 \times \paren {15 - 11} - 11\) from $(3)$
\(\ds \) \(=\) \(\ds 3 \times 15 - 4 \times 11\)
\(\ds \) \(=\) \(\ds 3 \times 15 - 4 \times \paren {41 - 2 \times 15}\) from $(2)$
\(\ds \) \(=\) \(\ds 11 \times 15 - 4 \times 41\)
\(\ds \) \(=\) \(\ds 11 \times \paren {97 - 2 \times 14} - 4 \times 41\) from $(1)$
\(\ds \) \(=\) \(\ds 11 \times 97 - 26 \times 41\)


So:

$\paren {-26} \times 41 \equiv 1 \pmod {97}$
\(\ds \paren {-26} \times 41\) \(\equiv\) \(\ds 1\) \(\ds \pmod {97}\)
\(\ds 71 \times 41\) \(\equiv\) \(\ds 1\) \(\ds \pmod {97}\) as $-26 \equiv 71 \pmod {97}$ because $26 + 71 = 97$
\(\ds \leadsto \ \ \) \(\ds {\eqclass {41} {97} }^{-1}\) \(=\) \(\ds \eqclass {71} {97}\)


Hence the result.

$\blacksquare$


Sources