Modulo Multiplication/Cayley Table/Modulo 6
Jump to navigation
Jump to search
Cayley Table for Modulo Multiplication
The multiplicative monoid of integers modulo $m$ can be described by showing its Cayley table.
This one is for modulo $6$:
- $\begin{array} {r|rrrrrr} \struct {\Z_6, \times_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 \\ \eqclass 1 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 2 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 \\ \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 \\ \eqclass 4 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 \\ \eqclass 5 6 & \eqclass 0 6 & \eqclass 5 6 & \eqclass 4 6 & \eqclass 3 6 & \eqclass 2 6 & \eqclass 1 6 \\ \end{array}$
which can also be presented:
- $\begin{array} {r|rrrrrr} \times_6 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 \\ 2 & 0 & 2 & 4 & 0 & 2 & 4 \\ 3 & 0 & 3 & 0 & 3 & 0 & 3 \\ 4 & 0 & 4 & 2 & 0 & 4 & 2 \\ 5 & 0 & 5 & 4 & 3 & 2 & 1 \\ \end{array}$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 2$: Compositions: Example $2.3$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $3$: Equivalence Relations and Equivalence Classes: Exercise $7$