Monoid/Examples/x+y+xy on Reals

From ProofWiki
Jump to navigation Jump to search

Example of Monoid

Let $\circ: \R \times \R$ be the operation defined on the real numbers $\R$ as:

$\forall x, y \in \R: x \circ y := x + y + x y$

Then $\struct {\R, \circ}$ is a monoid whose identity is $0$.


Proof

We have that:

$\forall x, y \in \R: x \circ y \in \R$

and so $\struct {\R, \circ}$ is closed.


Now let $x, y, z \in \R$.

We have:

\(\ds x \circ \paren {y \circ z}\) \(=\) \(\ds x + \paren {y \circ z} + x \paren {y \circ z}\) Definition of $\circ$
\(\ds \) \(=\) \(\ds x + \paren {y + z + y z} + x \paren {y + z + y z}\) Definition of $\circ$
\(\ds \) \(=\) \(\ds x + \paren {y + z + y z} + \paren {x y + x z + x y z}\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x + y + z + y z + x y + x z + x y z\) Real Addition is Associative


and:

\(\ds \paren {x \circ y} \circ z\) \(=\) \(\ds \paren {x \circ y} + z + \paren {x \circ y} z\) Definition of $\circ$
\(\ds \) \(=\) \(\ds \paren {x + y + x y} + z + \paren {x + y + x y} z\) Definition of $\circ$
\(\ds \) \(=\) \(\ds \paren {x + y + x y} + z + \paren {x z + y z + x y z}\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x + y + x y + z + x z + y z + x y z\) Real Addition is Associative


As can be seen by inspection:

$x \circ \paren {y \circ z} = \paren {x \circ y} \circ z$

and so $\circ$ is associative.


Then we have:

\(\ds x \circ 0\) \(=\) \(\ds x + 0 + x \times 0\) Definition of $\circ$
\(\ds \) \(=\) \(\ds x\) Real Addition Identity is Zero, Zero Element of Multiplication on Numbers
\(\ds \) \(=\) \(\ds 0 + x + 0 \times x\) Real Addition Identity is Zero, Zero Element of Multiplication on Numbers
\(\ds \) \(=\) \(\ds 0 \circ x\) Definition of $\circ$


The result follows by definition of monoid.

$\blacksquare$


Sources