Negated Upper Index of Binomial Coefficient/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Negated Upper Index of Binomial Coefficient

Let $n, m \in \Z$.

Then:

$\dbinom n m = \paren {-1}^{n - m} \dbinom {-\paren {m + 1} } {n - m}$

where $\dbinom n m$ is a binomial coefficient.


Proof

\(\ds \dbinom r k\) \(=\) \(\ds \paren {-1}^k \dbinom {k - r - 1} k\) Negated Upper Index of Binomial Coefficient
\(\ds \leadsto \ \ \) \(\ds \dbinom n {n - m}\) \(=\) \(\ds \paren {-1}^{n - m} \dbinom {\paren {n - m} - n - 1} {n - m}\) setting $r = n$ and $k = n - m$
\(\ds \leadsto \ \ \) \(\ds \dbinom n m\) \(=\) \(\ds \paren {-1}^{n - m} \dbinom {-m - 1} {n - m}\) Symmetry Rule for Binomial Coefficients
\(\ds \) \(=\) \(\ds \paren {-1}^{n - m} \dbinom {- \paren {m + 1} } {n - m}\)

$\blacksquare$


Sources