N (n + 1) (2n + 1) over 6 is Integer

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z$ be an integer.


Then $\dfrac {n \paren {n + 1} \paren {2 n + 1} } 6$ is also an integer.


Proof

This is equivalent to proving that $n \paren {n + 1} \paren {2 n + 1}$ is a multiple of $6$.


There are $6$ cases to consider:

$(1): \quad n \equiv 0 \pmod 6$: we have $n = 6 k$
$(2): \quad n \equiv 1 \pmod 6$: we have $n = 6 k + 1$
$(3): \quad n \equiv 2 \pmod 6$: we have $n = 6 k + 2$
$(4): \quad n \equiv 3 \pmod 6$: we have $n = 6 k + 3$
$(5): \quad n \equiv 4 \pmod 6$: we have $n = 6 k + 4$
$(6): \quad n \equiv 5 \pmod 6$: we have $n = 6 k + 5$


\(\text {(1)}: \quad\) \(\ds n\) \(=\) \(\ds 6 k\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(=\) \(\ds \paren {6 k} \paren {6 k + 1} \paren {2 \paren {6 k} + 1}\)
\(\ds \) \(=\) \(\ds 6 \paren {k \paren {6 k + 1} \paren {12 k + 1} }\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(\equiv\) \(\ds 0 \pmod 6\)

$\Box$


\(\text {(2)}: \quad\) \(\ds n\) \(=\) \(\ds 6 k + 1\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(=\) \(\ds \paren {6 k + 1} \paren {6 k + 2} \paren {2 \paren {6 k + 1} + 1}\)
\(\ds \) \(=\) \(\ds \paren {6 k + 1} \paren {6 k + 2} \paren {12 k + 3}\)
\(\ds \) \(=\) \(\ds \paren {6 k + 1} \paren {2 \paren {3 k + 1} } \paren {3 \paren {4 k + 1} }\)
\(\ds \) \(=\) \(\ds 6 \paren {6 k + 1} \paren {3 k + 1} \paren {4 k + 1}\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(\equiv\) \(\ds 0 \pmod 6\)

$\Box$


\(\text {(3)}: \quad\) \(\ds n\) \(=\) \(\ds 6 k + 2\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(=\) \(\ds \paren {6 k + 2} \paren {6 k + 3} \paren {2 \paren {6 k + 2} + 1}\)
\(\ds \) \(=\) \(\ds \paren {2 \paren {3 k + 1} } \paren {3 \paren {2 k + 1} } \paren {12 k + 5}\)
\(\ds \) \(=\) \(\ds 6 \paren {3 k + 1} \paren {2 k + 1} \paren {12 k + 5}\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(\equiv\) \(\ds 0 \pmod 6\)

$\Box$


\(\text {(4)}: \quad\) \(\ds n\) \(=\) \(\ds 6 k + 3\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(=\) \(\ds \paren {6 k + 3} \paren {6 k + 4} \paren {2 \paren {6 k + 3} + 1}\)
\(\ds \) \(=\) \(\ds \paren {3 \paren {2 k + 1} } \paren {2 \paren {3 k + 2} } \paren {12 k + 7}\)
\(\ds \) \(=\) \(\ds 6 \paren {2 k + 1} \paren {3 k + 2} \paren {12 k + 7}\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(\equiv\) \(\ds 0 \pmod 6\)

$\Box$


\(\text {(5)}: \quad\) \(\ds n\) \(=\) \(\ds 6 k + 4\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(=\) \(\ds \paren {6 k + 4} \paren {6 k + 5} \paren {2 \paren {6 k + 4} + 1}\)
\(\ds \) \(=\) \(\ds \paren {6 k + 4} \paren {6 k + 5} \paren {12 k + 9}\)
\(\ds \) \(=\) \(\ds \paren {2 \paren {3 k + 2} } \paren {6 k + 5} \paren {3 \paren {4 k + 3} }\)
\(\ds \) \(=\) \(\ds 6 \paren {3 k + 2} \paren {6 k + 5} \paren {4 k + 3}\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(\equiv\) \(\ds 0 \pmod 6\)

$\Box$


\(\text {(6)}: \quad\) \(\ds n\) \(=\) \(\ds 6 k + 5\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(=\) \(\ds \paren {6 k + 5} \paren {6 k + 6} \paren {2 \paren {6 k + 5} + 1}\)
\(\ds \) \(=\) \(\ds 6 \paren {6 k + 5} \paren {k + 1} \paren {12 k + 11}\)
\(\ds \leadsto \ \ \) \(\ds n \paren {n + 1} \paren {2 n + 1}\) \(\equiv\) \(\ds 0 \pmod 6\)

$\blacksquare$


Sources