Natural Number Multiplication Distributes over Addition/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The operation of multiplication is distributive over addition on the set of natural numbers $\N$:

$\forall x, y, z \in \N:$
$\paren {x + y} \times z = \paren {x \times z} + \paren {y \times z}$
$z \times \paren {x + y} = \paren {z \times x} + \paren {z \times y}$


Proof

\(\ds \paren {x + y} \times z\) \(=\) \(\ds +^z \paren {x + y}\) Definition of Natural Number Multiplication
\(\ds \) \(=\) \(\ds \paren {+^z x} + \paren {+^z y}\) Power of Product of Commuting Elements in Semigroup equals Product of Powers
\(\ds \) \(=\) \(\ds x \times z + y \times z\)

$\Box$

\(\ds z \times \paren {x + y}\) \(=\) \(\ds +^{x + y} z\) Definition of Natural Number Multiplication
\(\ds \) \(=\) \(\ds \paren {+^x z} + \paren {+^y z}\) Index Laws for Semigroup: Sum of Indices
\(\ds \) \(=\) \(\ds z \times x + z \times y\)

$\blacksquare$


Sources