Natural Numbers under Min Operation forms Total Semilattice

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\N, \wedge}$ denote the set of natural numbers $\N$ under the min operation:

$\forall a, b \in \N: a \wedge b := \min \set {a, b}$

Then $\struct {\N, \wedge}$ forms a total semilattice.


Proof

Taking the semilattice axioms in turn:


Semilattice Axiom $\text {SL} 0$: Closure

We have that:

$\min \set {a, b} = \begin {cases} a & : a \le b \\ b : b \le a \end {cases}$

Hence if $a, b \in \N$ then $a \wedge b \in \N$.

Thus $\struct {\N, \wedge}$ is closed.

$\Box$


Semilattice Axiom $\text {SL} 1$: Associativity

\(\ds \forall a, b, c \in \N: \, \) \(\ds \paren {a \wedge b} \wedge c\) \(=\) \(\ds \min \set {\min \set {a, b}, c}\) Definition of $\wedge$
\(\ds \) \(=\) \(\ds \min \set {a, \min \set {b, c} }\) Min Operation is Associative
\(\ds \) \(=\) \(\ds a \wedge \paren {b \wedge c}\)

Thus $\wedge$ is associative.

$\Box$


Semilattice Axiom $\text {SL} 2$: Commutativity

\(\ds \forall a, b \in \N: \, \) \(\ds a \wedge b\) \(=\) \(\ds \min \set {a, b}\) Definition of $\wedge$
\(\ds \) \(=\) \(\ds \min \set {b, a}\) Min Operation is Commutative
\(\ds \) \(=\) \(\ds b \wedge a\)

Thus $\wedge$ is commutative.

$\Box$


Semilattice Axiom $\text {SL} 3$: Idempotence

\(\ds \forall a \in \N: \, \) \(\ds a \wedge a\) \(=\) \(\ds \min \set {a, a}\) Definition of $\wedge$
\(\ds \) \(=\) \(\ds a\) Min Operation is Idempotent

Thus $\wedge$ is idempotent.

$\Box$


All the semilattice axioms are thus seen to be fulfilled, and so $\struct {\N, \wedge}$ is a semilattice.

$\Box$


Totality

Let $T \subseteq S$.

Let $a, b\ in T$.

From Min Operation Equals an Operand:

$\forall a, b \in \N: \min \set {a, b} \in \set {a, b}$

Hence by definition of subset:

$\min \set {a, b} \in T$

Hence by definition $\struct {\N, \wedge}$ is a total semilattice.

$\blacksquare$


Sources