Non-Equivalence
Jump to navigation
Jump to search
Theorem
Non-Equivalence as Disjunction of Conjunctions
Formulation 1
- $\neg \left ({p \iff q}\right) \dashv \vdash \left({\neg p \land q}\right) \lor \left({p \land \neg q}\right)$
Formulation 2
- $\vdash \paren {\neg \paren {p \iff q} } \iff \paren {\paren {\neg p \land q} \lor \paren {p \land \neg q} }$
Non-Equivalence as Disjunction of Negated Implications
- $\neg \paren {p \iff q} \dashv \vdash \neg \paren {p \implies q} \lor \neg \paren {q \implies p}$
Non-Equivalence as Conjunction of Disjunction with Negation of Conjunction
- $\neg \paren {p \iff q} \dashv \vdash \paren {p \lor q} \land \neg \paren {p \land q}$
That is, negation of the biconditional means the same thing as either-or but not both, that is, exclusive or.
Non-Equivalence as Conjunction of Disjunction with Disjunction of Negations
- $\neg \paren {p \iff q} \dashv \vdash \paren {p \lor q} \land \paren {\neg p \lor \neg q}$