Non-Negative Additive Function is Monotone

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\SS$ be an algebra of sets.

Let $f: \SS \to \overline \R$ be an additive function, that is:

$\forall A, B \in \SS: A \cap B = \O \implies \map f {A \cup B} = \map f A + \map f B$


If $\forall A \in \SS: \map f A \ge 0$, then $f$ is monotone, that is:

$A \subseteq B \implies \map f A \le \map f B$


Proof

Let $A \subseteq B$.


Then:

\(\ds B\) \(=\) \(\ds \paren {B \setminus A} \cup \paren {A \cap B}\) Set Difference Union Intersection
\(\ds \) \(=\) \(\ds \paren {B \setminus A} \cup A\) Intersection with Subset is Subset
\(\ds \O\) \(=\) \(\ds \paren {B \setminus A} \cap A\) Set Difference Intersection with Second Set is Empty Set
\(\ds 0\) \(\le\) \(\ds \map f {B \setminus A}\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds \map f A\) \(\le\) \(\ds \map f {B \setminus A} + \map f A\)
\(\ds \leadsto \ \ \) \(\ds \map f A\) \(\le\) \(\ds \map f B\) Definition of Additive Function (Measure Theory)

$\blacksquare$