Non-Zero Natural Numbers under Multiplication with Divisibility forms Ordered Semigroup

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\N_{>0}$ be the set of natural numbers without zero, that is, $\N_{>0} = \N \setminus \set 0$.

Let $\divides$ denote the divisibility relation on $\N_{>0}$:

$\forall a, b \in \N_{>0}: a \divides b \iff \exists k \in \Z: k \times a = b$

where $\times$ denotes conventional integer multiplication.


The ordered structure $\struct {\N_{>0}, \times, \divides}$ forms an ordered semigroup.


Proof

First we note that from Non-Zero Natural Numbers under Multiplication form Commutative Semigroup, $\struct {\N_{>0}, \times}$ is a semigroup.

From Divisor Relation on Positive Integers is Partial Ordering, $\struct {\N_{>0}, \divides}$ is an ordered set.

It remains to be shown that $\divides$ is compatible with $\times$.

Let $a, b \in \N_{>0}$ such that $a \divides b$.

We have:

\(\ds a\) \(\divides\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \exists k \in \Z: \, \) \(\ds k \times a\) \(=\) \(\ds b\) Definition of Divisor of Integer
\(\ds \leadsto \ \ \) \(\ds \forall m \in \N_{>0}: \, \) \(\ds m \times k \times a\) \(=\) \(\ds m \times b\)
\(\ds \leadsto \ \ \) \(\ds k \times \paren {m \times a}\) \(=\) \(\ds m \times b\)
\(\ds \leadsto \ \ \) \(\ds m \times a\) \(\divides\) \(\ds m \times b\) Definition of Divisor of Integer

Similarly:

\(\ds a\) \(\divides\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \exists k \in \Z: \, \) \(\ds k \times a\) \(=\) \(\ds b\) Definition of Divisor of Integer
\(\ds \leadsto \ \ \) \(\ds \forall m \in \N_{>0}: \, \) \(\ds k \times a \times m\) \(=\) \(\ds b \times m\)
\(\ds \leadsto \ \ \) \(\ds k \times \paren {a \times m}\) \(=\) \(\ds b \times m\)
\(\ds \leadsto \ \ \) \(\ds a \times m\) \(\divides\) \(\ds b \times m\) Definition of Divisor of Integer

Hence the result.

$\blacksquare$


Sources