Properties of Norm on Division Ring/Norm of Quotient

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a division ring with zero $0_R$ and unity $1_R$.

Let $\norm {\,\cdot\,}$ be a norm on $R$.

Let $x, y \in R$


Then:

$y \ne 0_R \implies \norm {x y^{-1} } = \norm {y^{-1} x} = \dfrac {\norm x} {\norm y}$


Proof

Let $y \ne 0_R$.

By Norm Axiom $\text N 1$: Positive Definiteness then:

$\norm y \ne 0$

So:

\(\ds \norm {x \circ y^{-1} }\) \(=\) \(\ds \norm x \norm {y^{-1} }\) Norm Axiom $\text N 2$: Multiplicativity
\(\ds \) \(=\) \(\ds \dfrac {\norm x} {\norm y}\) Norm of Inverse

Similarly:

$\norm {y^{-1} x} = \dfrac {\norm x} {\norm y}$

$\blacksquare$


Sources