Norm of Vector Cross Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a$ and $\mathbf b$ be vectors in the real Euclidean space $\R^3$.

Let $\times$ denote the vector cross product.


Then:

$\norm {\mathbf a \times \mathbf b} = \norm {\mathbf a} \norm {\mathbf b} \size {\sin \theta}$

where $\theta$ is the angle between $\mathbf a$ and $\mathbf b$, or an arbitrary number if $\mathbf a$ or $\mathbf b$ is the zero vector.



Proof

Suppose either $\mathbf a$ or $\mathbf b$ is the zero vector.

Then by Norm Axiom $\text N 1$: Positive Definiteness:

$\norm {\mathbf a} = 0$

or:

$\norm {\mathbf b} = 0$


By calculation, it follows that $\mathbf a \times \mathbf b$ is also the zero vector.

Hence:

$\norm {\mathbf a \times \mathbf b} = 0$

and equality holds.


Now suppose that both $\mathbf a$ or $\mathbf b$ are non-zero vectors.

We have:

\(\ds \norm {\mathbf a \times \mathbf b}^2\) \(=\) \(\ds \norm {\mathbf a}^2 \norm {\mathbf b}^2 - \paren {\mathbf a \cdot \mathbf b}^2\) Square of Norm of Vector Cross Product
\(\ds \) \(=\) \(\ds \norm {\mathbf a}^2 \norm {\mathbf b}^2 - \norm {\mathbf a}^2 \norm {\mathbf b}^2 \cos^2 \theta\) Cosine Formula for Dot Product
\(\ds \) \(=\) \(\ds \norm {\mathbf a}^2 \norm {\mathbf b}^2 \paren{1 - \cos^2 \theta}\)
\(\ds \) \(=\) \(\ds \norm {\mathbf a}^2 \norm {\mathbf b}^2 \sin^2 \theta\) Sum of Squares of Sine and Cosine
\(\ds \leadstoandfrom \ \ \) \(\ds \norm {\mathbf a \times \mathbf b}\) \(=\) \(\ds \norm {\mathbf a} \norm {\mathbf b} \size{\sin \theta}\) taking the square root of both sides of the equality

$\blacksquare$


Sources