Norm on Bounded Linear Functional is Finite

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $V$ be a normed vector space.

Let $L$ be a bounded linear functional on $V$.

Let $\norm L$ denote the norm on $L$ defined as:

$\norm L = \inf \set {c > 0: \forall v \in V: \size {L v} \le c \norm v_V}$


Then:

$\norm L < \infty$


Proof

By definition of a bounded linear functional:

$\exists c \in \R_{> 0}: \forall v \in V: \size{L v} \le c \norm v_V$

Hence:

$\set {\lambda > 0: \forall v \in V: \size {L v} \le \lambda \norm v_V} \ne \O$


By definition: $\set {\lambda > 0: \forall v \in V: \size {L v} \le \lambda \norm v_V}$ is bounded below by $0$.


From the Greatest Lower Bound Property:

$\norm L = \inf \set {\lambda > 0: \forall v \in V: \size {L v} \le \lambda \norm v_V}$ exists.


We have:

\(\ds \norm L\) \(\le\) \(\ds c\) Definition of Infimum
\(\ds \) \(<\) \(\ds \infty\) because $c \in \R_{>0}$

The result follows.

$\blacksquare$