Null Polynomial is Additive Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

The set of polynomial forms has an additive identity.




Proof

Let $\struct {R, +, \circ}$ be a commutative ring with unity with zero $0_R$.

Let $\set {X_j: j \in J}$ be a set of indeterminates.

Let $Z$ be the set of all multiindices indexed by $\set {X_j: j \in J}$.

Let:

$\ds f = \sum_{k \mathop \in Z} a_k \mathbf X^k$

be an arbitrary polynomial form in the indeterminates $\set {X_j: j \in J}$ over $R$.


Let:

$\ds N = \sum_{k \mathop \in Z} 0_R \mathbf X^k$

be the null polynomial.


Then:

\(\ds f + N\) \(=\) \(\ds \sum_{k \mathop \in Z} \paren {a_k + 0_R} \mathbf X^k\) Definition of Polynomial Addition
\(\ds \) \(=\) \(\ds \sum_{k \mathop \in Z} a_k \mathbf X^k\)
\(\ds \) \(=\) \(\ds f\) Definition of Polynomial Addition

Therefore, $N + f = f$ for all polynomial forms $f$.

Therefore, $N$ is an additive identity for the set of polynomial forms.

$\blacksquare$