Null Space Contains Zero Vector
Jump to navigation
Jump to search
Theorem
Let:
- $\map {\mathrm N} {\mathbf A} = \set {\mathbf x \in \R^n: \mathbf A \mathbf x = \mathbf 0}$
be the null space of $\mathbf A$, where:
- $ \mathbf A_{m \times n} = \begin {bmatrix} a_{1 1} & a_{1 2} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} \\ \end{bmatrix}$
is a matrix in the matrix space $\map {\MM_\R} {m, n}$.
Then the null space of $\mathbf A$ contains the zero vector:
- $\mathbf 0 \in \map {\mathrm N} {\mathbf A}$
where:
- $\mathbf 0 = \mathbf 0_{m \times 1} = \begin {bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end {bmatrix}$
Proof 1
\(\ds \mathbf A \mathbf 0\) | \(=\) | \(\ds \begin {bmatrix} a_{1 1} & a_{1 2} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} \\ \end {bmatrix} \begin {bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf 0\) |
The order is correct by hypothesis.
The result follows by the definition of null space.
$\blacksquare$
Proof 2
From Matrix Product as Linear Transformation, $\mathbf {Ax} = \mathbf 0$ defines a linear transformation from $\R^m$ to $\R^n$.
The result then follows from Linear Transformation Maps Zero Vector to Zero Vector.
Also see
- Null Space Closed under Scalar Multiplication
- Null Space Closed under Scalar Multiplication
- Null Space is Subspace
- Kernel of Linear Transformation contains Zero Vector
Sources
- For a video presentation of the contents of this page, visit the Khan Academy.