Number less than Integer iff Floor less than Integer

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a real number.

Let $\floor x$ denote the floor of $x$.

Let $n \in \Z$ be an integer.


Then:

$\floor x < n \iff x < n$


Proof

Necessary Condition

Let $x < n$.

By definition of the floor of $x$:

$\floor x \le x$

Hence:

$\floor x < n$

$\Box$


Sufficient Condition

Let $\floor x < n$.


We have that:

$\forall m, n \in \Z: m < n \iff m + 1 \le n$

and so:

$(1): \quad \floor x + 1 \le n$


Then:

\(\ds x\) \(<\) \(\ds \floor x + 1\) Definition of Floor Function
\(\ds \) \(\le\) \(\ds n\) from $(1)$

$\Box$


Hence the result:

$\floor x < n \iff x < n$

$\blacksquare$


Sources