Number minus Modulo is Integer Multiple
Jump to navigation
Jump to search
Theorem
Let $x, y \in \R$ be real numbers.
Let $x \bmod y$ denote the modulo operation:
- $x \bmod y := \begin{cases} x - y \floor {\dfrac x y} & : y \ne 0 \\ x & : y = 0 \end{cases}$
where $\floor {\dfrac x y}$ denotes the floor of $\dfrac x y$.
Let $y < 0$.
Then:
- $x - \paren {x \bmod y}$
is an integer multiple of $y$.
Proof
When $y = 0$ we have:
- $x \bmod y := x$
Thus:
- $x - \paren {x \bmod y} = 0$
From Zero is Integer Multiple of Zero it follows that:
- $x - \paren {x \bmod y}$
is an integer multiple of $y$.
Let $y \ne 0$.
Then:
\(\ds x \bmod y\) | \(=\) | \(\ds x - y \floor {\dfrac x y}\) | Definition of Modulo Operation | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x - \paren {x \bmod y}\) | \(=\) | \(\ds y \floor {\dfrac x y}\) | Definition of Modulo Operation |
From Floor Function is Integer, $\floor {\dfrac x y}$ is an integer.
Thus:
- $\exists n \in \Z: x - \paren {x \bmod y} = n y$
where in the case $n = \floor {\dfrac x y}$
Hence the result by definition of integer multiple.
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory: $(2) \ \text{c)}$