Number of Fibonacci Numbers with Same Number of Decimal Digits

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an integer such that $n > 1$.

When expressed in decimal notation, there are either $4$ or $5$ Fibonacci numbers with $n$ digits.


Proof

Let $F_m$ be an $n$-digit Fibonacci number.

Then $F_m \ge 10^{n - 1} \ge 10$.

We have:

\(\ds F_m\) \(=\) \(\ds F_{m - 1} + F_{m - 2}\) Definition of Fibonacci Numbers
\(\ds \) \(\le\) \(\ds 2 F_{m - 1}\) as $F_{m - 2} \le F_{m - 1}$

Thus:

\(\ds F_{m + 5}\) \(=\) \(\ds F_{m - 1} F_5 + F_m F_6\) Honsberger's Identity
\(\ds \) \(=\) \(\ds 5 F_{m - 1} + 8 F_m\)
\(\ds \) \(>\) \(\ds 2 F_m + 8 F_m\) $F_m \le 2 F_{m - 1}$
\(\ds \) \(\ge\) \(\ds 10^n\)

So $F_{m + 5}$ is a number of at least $n + 1$ digits.


Therefore there is at most $5$ Fibonacci numbers with $n$ digits: $F_m, F_{m + 1}, F_{m + 2}, F_{m + 3}, F_{m + 4}$.


Similarly, $10 \le F_m < 10^n$.

Suppose $F_m$ is the smallest Fibonacci numbers with $n$ digits.

Then $F_{m - 1} < 10^{n - 1}$.

Thus:

\(\ds F_{m + 3}\) \(=\) \(\ds F_{m - 1} F_3 + F_m F_4\) Honsberger's Identity
\(\ds \) \(=\) \(\ds 2 F_{m - 1} + 3 F_m\)
\(\ds \) \(<\) \(\ds 8 F_{m - 1}\) $F_m \le 2 F_{m - 1}$
\(\ds \) \(<\) \(\ds 10^n\)

So there is at least $4$ Fibonacci numbers with $n$ digits: $F_m, F_{m + 1}, F_{m + 2}, F_{m + 3}$.


Combining the arguments above, there are either $4$ or $5$ Fibonacci numbers with $n$ digits.

$\blacksquare$


Historical Note

This result is attributed to K. Subba Rao.


Sources