Odd Integer Modulo 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an odd integer.

Then $n$ can be expressed either as:

$n = 4 k + 1$

or as:

$n = 4 k + 3$


Proof

By the Division Theorem, $n$ can be expressed as:

$n = 4 k + r$

where:

$k, r \in \Z$
$0 \le r < 4$


That is, one of the following holds:

\(\ds n\) \(=\) \(\ds 4 k\)
\(\ds n\) \(=\) \(\ds 4 k + 1\)
\(\ds n\) \(=\) \(\ds 4 k + 2\)
\(\ds n\) \(=\) \(\ds 4 k + 3\)


Of these:

\(\ds n\) \(=\) \(\ds 4 k\)
\(\ds \) \(=\) \(\ds 2 \paren {2 k}\)

and:

\(\ds n\) \(=\) \(\ds 4 k + 2\)
\(\ds \) \(=\) \(\ds 2 \paren {2 k + 1}\)

and so are even by definition.


Then:

\(\ds n\) \(=\) \(\ds 4 k + 1\)
\(\ds \) \(=\) \(\ds 2 \paren {2 k} + 1\)

and:

\(\ds n\) \(=\) \(\ds 4 k + 3\)
\(\ds \) \(=\) \(\ds 2 \paren {2 k + 1} + 1\)

and so are odd by definition.

$\blacksquare$


Sources