Open Interval Defined by Absolute Value

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\xi, \delta \in \R$ be real numbers.

Let $\delta > 0$.


Then:

$\set {x \in \R: \size {\xi - x} < \delta} = \openint {\xi - \delta} {\xi + \delta}$

where $\openint {\xi - \delta} {\xi + \delta}$ is the open real interval between $\xi - \delta$ and $\xi + \delta$.


Proof

\(\ds \size {\xi - x}\) \(<\) \(\ds \delta\)
\(\ds \leadstoandfrom \ \ \) \(\ds -\delta\) \(<\) \(\ds \xi - x < \delta\) Negative of Absolute Value: Corollary 1
\(\ds \leadstoandfrom \ \ \) \(\ds \delta\) \(>\) \(\ds x - \xi > -\delta\)
\(\ds \leadstoandfrom \ \ \) \(\ds \xi + \delta\) \(>\) \(\ds x > \xi - \delta\)


But:

$\openint {\xi - \delta} {\xi + \delta} = \set {x \in \R: \xi - \delta < x < \xi + \delta}$

$\blacksquare$


Also presented as

$\set {x \in \R: \size {x - \xi} < \delta} = \openint {\xi - \delta} {\xi + \delta}$

which is immediate from:

$\size {x - \xi} = \size {\xi - x}$


Also see


Sources