Ordering/Examples/Integer Difference on Reals

From ProofWiki
Jump to navigation Jump to search

Example of Ordering

Let $\preccurlyeq$ denote the relation on the set of real numbers $\R$ defined as:

$a \preccurlyeq b$ if and only if $b - a$ is a non-negative integer

Then $\preccurlyeq$ is an ordering on $\R$.


Proof

Reflexivity

We have that:

$\forall a \in \R: a - a = 0 \in \Z_{\ge 0}$

Thus:

$\forall a \in \R: a \preccurlyeq a$

So $\preccurlyeq$ has been shown to be reflexive.

$\Box$


Transitivity

Let $a, b, c \in \R$ such that:

\(\ds a\) \(\preccurlyeq\) \(\ds b\)
\(\, \ds \land \, \) \(\ds b\) \(\preccurlyeq\) \(\ds c\)
\(\ds \leadsto \ \ \) \(\ds \exists m, n \in \Z_{\ge 0}: \, \) \(\ds b - a\) \(=\) \(\ds m\) Definition of $\preccurlyeq$
\(\, \ds \land \, \) \(\ds c - b\) \(=\) \(\ds n\)
\(\ds \leadsto \ \ \) \(\ds \exists m, n \in \Z_{\ge 0}: \, \) \(\ds \paren {b - a} + \paren {c - b}\) \(=\) \(\ds m + n\)
\(\ds \leadsto \ \ \) \(\ds \exists m + n \in \Z_{\ge 0}: \, \) \(\ds c - a\) \(=\) \(\ds m + n\)
\(\ds \leadsto \ \ \) \(\ds a\) \(\preccurlyeq\) \(\ds c\) Definition of $\preccurlyeq$


So $\preccurlyeq$ has been shown to be transitive.

$\Box$


Antisymmetry

Let $a, b \in \R$ such that:

\(\ds a\) \(\preccurlyeq\) \(\ds b\)
\(\, \ds \land \, \) \(\ds b\) \(\preccurlyeq\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \exists m, n \in \Z_{\ge 0}: \, \) \(\ds b - a\) \(=\) \(\ds m\) Definition of $\preccurlyeq$
\(\, \ds \land \, \) \(\ds a - b\) \(=\) \(\ds n\)
\(\ds \leadsto \ \ \) \(\ds \paren {a - b} + \paren {b - a}\) \(=\) \(\ds m + n\)
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds m + n\)
\(\ds \leadsto \ \ \) \(\ds m = n\) \(=\) \(\ds 0\) Definition of $m$ and $n$
\(\ds \leadsto \ \ \) \(\ds a\) \(=\) \(\ds b\) Definition of $\preccurlyeq$

So $\preccurlyeq$ has been shown to be antisymmetric.

$\Box$


$\preccurlyeq$ has been shown to be reflexive, transitive and antisymmetric.

Hence by definition it is an ordering.

$\blacksquare$


Sources