Ordering of Integers is Reversed by Negation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \Z$ such that $x > y$.

Then:

$-x < -y$


Proof

From the formal definition of integers, $\eqclass {a, b} {}$ is an equivalence class of ordered pairs of natural numbers.


Let $x = \eqclass {a, b} {}$ and $y = \eqclass {c, d} {}$ for some $x, y \in \Z$.

We have:

\(\ds x\) \(>\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \eqclass {a, b} {}\) \(>\) \(\ds \eqclass {c, d} {}\) Definition of Integer
\(\ds \leadsto \ \ \) \(\ds a + d\) \(>\) \(\ds b + c\) Definition of Strict Ordering on Integers
\(\ds \leadsto \ \ \) \(\ds b + c\) \(<\) \(\ds a + d\)
\(\ds \leadsto \ \ \) \(\ds \eqclass {b, a} {}\) \(<\) \(\ds \eqclass {d, c} {}\)
\(\ds \leadsto \ \ \) \(\ds -\eqclass {a, b} {}\) \(<\) \(\ds -\eqclass {c, d} {}\) Negative of Integer
\(\ds \leadsto \ \ \) \(\ds -x\) \(<\) \(\ds -y\) Definition of Integer

$\blacksquare$


Sources