Ordering of Inverses in Ordered Monoid

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ, \preceq}$ be an ordered monoid whose identity is $e$.

Let $x, y \in S$ be invertible.


Then:

$x \prec y \iff y^{-1} \prec x^{-1}$


Proof

Necessary Condition

\(\ds x\) \(\prec\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds e\) \(=\) \(\ds x^{-1} \circ x \prec x^{-1} \circ y\) Strict Ordering Preserved under Product with Cancellable Element
\(\ds \leadsto \ \ \) \(\ds y^{-1}\) \(=\) \(\ds e \circ y^{-1} \prec x^{-1} \circ y \circ y^{-1} = x^{-1}\)
\(\ds \leadsto \ \ \) \(\ds y^{-1}\) \(\prec\) \(\ds x^{-1}\)

$\Box$


Sufficient Condition

\(\ds y^{-1}\) \(\prec\) \(\ds x^{-1}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \paren {x^{-1} }^{-1} \prec \paren {y^{-1} }^{-1} = y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\prec\) \(\ds y\)

$\blacksquare$


Sources