Ordering on Real Numbers from Decimal Expansion

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \R$ be real numbers.

Let $x$ and $y$ be expressed by their decimal expansions:


\(\ds x\) \(=\) \(\ds m \cdotp d_1 d_2 d_3 \ldots\)
\(\ds y\) \(=\) \(\ds n \cdotp e_1 e_2 e_3 \ldots\)

Let $\preccurlyeq_l$ be the lexicographic ordering on $\R$ defined as:

$x \preccurlyeq_l y$ if and only if:
$m \prec n$
or:
$m = n$ and $\exists k \in \Z_{>0}: \paren {\forall j: 1 \le j < k: d_j = e_j} \land d_k < e_k$
or:
$m = n$ and $\forall j \in \Z_{>0}: d_j = e_j$.


Then:

$x \le y$

where $\le$ denotes the usual ordering on $\R$.


Proof




Sources