Ordinal Addition is Closed

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\On$ be the class of all ordinals.


Then:

$\forall x, y \in \On: x + y \in \On$

That is: the sum $x+y$ is an ordinal.


Proof

Using Transfinite Induction on $y$:


Base Case

\(\ds x\) \(\in\) \(\ds \On\)
\(\ds \leadsto \ \ \) \(\ds x + \O\) \(\in\) \(\ds \On\) Definition of Ordinal Addition


Inductive Case

\(\ds x + y\) \(\in\) \(\ds \On\)
\(\ds \leadsto \ \ \) \(\ds \paren {x + y}^+\) \(\in\) \(\ds \On\) Successor Set of Ordinal is Ordinal
\(\ds \leadsto \ \ \) \(\ds x + y^+\) \(\in\) \(\ds \On\) Definition of Ordinal Addition


Limit Case

\(\ds \forall z \in y: \, \) \(\ds x + z\) \(\in\) \(\ds \On\)
\(\ds \leadsto \ \ \) \(\ds \bigcup_{z \mathop \in y} \paren {x + z}\) \(\in\) \(\ds \On\) Union of Set of Ordinals is Ordinal: Corollary
\(\ds \leadsto \ \ \) \(\ds x + z\) \(\in\) \(\ds \On\) Definition of Ordinal Addition

$\blacksquare$



Sources