Ordinal Multiplication by One

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be an ordinal.

Let $1$ denote the ordinal one.

\(\ds x \cdot 1\) \(=\) \(\ds x\)
\(\ds 1 \cdot x\) \(=\) \(\ds x\)


Proof

\(\ds x \cdot 1\) \(=\) \(\ds x \cdot \O^+\) Definition of One (Ordinal)
\(\ds \) \(=\) \(\ds \paren {x \cdot \O} + x\) Definition of Ordinal Multiplication
\(\ds \) \(=\) \(\ds \O + x\) Definition of Ordinal Multiplication
\(\ds \) \(=\) \(\ds x\) Ordinal Addition by Zero

$\Box$


The proof of the other equality shall proceed by Transfinite Induction.


Basis for the Induction

\(\ds 1 \cdot \O\) \(=\) \(\ds \O\) Definition of Ordinal Multiplication

This proves the basis for the induction.


Induction Step

\(\ds 1 \cdot x\) \(=\) \(\ds x\) Inductive Hypothesis
\(\ds \leadsto \ \ \) \(\ds \paren {1 \cdot x} + 1\) \(=\) \(\ds x^+\) Ordinal Addition by One
\(\ds 1 \cdot x^+\) \(=\) \(\ds \paren {1 \cdot x} + 1\) Definition of Ordinal Multiplication
\(\ds \leadsto \ \ \) \(\ds 1 \cdot x^+\) \(=\) \(\ds x^+\) Equality is Transitive

This proves the induction step.


Limit Case

\(\ds \forall y \in x: \, \) \(\ds 1 \cdot y\) \(=\) \(\ds y\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds \bigcup_{y \mathop \in x} \paren {1 \cdot y}\) \(=\) \(\ds \bigcup_{y \mathop \in x} y\) Indexed Union Equality
\(\ds \leadsto \ \ \) \(\ds 1 \cdot x\) \(=\) \(\ds \bigcup_{y \mathop \in x} y\) Definition of Ordinal Multiplication
\(\ds \leadsto \ \ \) \(\ds 1 \cdot x\) \(=\) \(\ds x\) Limit Ordinal Equals its Union

This proves the limit case.

$\blacksquare$


Sources